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I. INTRODUCTION

Given a nonlinear parachute gliding system, control can be effected by a
servomotor pulling on the shroud lines of the parechute which causes a banked
turn of the parachute and a change in the direction of flight. Under the condition
that the magnitude of the wind velocity vector w be less than that of the par~-
chute horizontal velocity vector v (relative to air); i.e., ||w]| < ||¥|], the
parachute possesses a wind penetrating capability and the potential of reaching
the target under arbitrary wind directions. It is assumed that the initial
altitude, and thus the gliding period, is properly chosen in accordance with the.
wind angle 6 and the ratio ||w||/||v]|| such that a solution exists. Also, a
uniform wind, constant in both magnitude and direction, is assumed throughout
this analysis.

It is desired to compute a control law which minimizes the control effort
and the terminal error from the target. The usual linearization analysis is
insufficient to approximate the given system due to the highly transcendental
nonlinearities. Thus, a numerical solution to this problem is developed and
intended to give some light to the stochastic wind case study. The numerical
algorithm derived by Martensson [4] in solving the Hamilton-Jaccbi-Bellman
partial differential equation with the differential dynamic programming (DDP)
principle is applied to solve the given nonlinear gliding problem. The

theoretical derivation of this aigorithm is given in the Appendix.

II1. PROBLEM FORMULATION

A. System Equations and Transformation

Assuming a constant wind w with angle 6 in the horizontal plane, a con-
stant rate of deccent v, and an initial altitude ho at launch time, the equations

of motion governing the parachute can be expressei in the horizontal plane as
follows: (Pearson [5])




R

=2

$6p = F+¥ oster= 2 (1)
p: position vector
v: horizontal velocity cf parachute relative to air.

This is depicted in Fig. 1. The velocity vector v(t) is assumed to have con-

stant magnitude a. Thus v can be represented by

vl(t) = & coslu(t))

(2)
vb(t) = a sinfuw(t))

vhere the velocity angle w(t) is related to the bank angle ¢ of the parachute

via ‘he well-known relation

g-t- w(t) = ftam(t) (3)

g: gravity acceleration.

Since the bank angle ¢ can be directly manipulated by changes in the

servomotor connecting the shroud lines, we can rewrite eq. (1) - (3) as

9_ = acosw + w

&h ° PRV

d - i

Gt Py = asinwtw, (4)
d -

acy = v

in which u is regarded as the control variable. lLet i(to), w(to), and G(to)
be given at some initial time to in the interval 0 < to < T, A performance

index which takes into account several desirable features of this problem is

q
Pw) = 3 |02 + ¢ Ty(M-g-n2° + mZTJE vl (t)dt (s)
(]
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where 9, and q, are non-negative weighting paremeters. In eq. (5) the first
term, 1/2 ||p(T)||2, reflects the desirability of minimizing the Euclidean dis-
tance from the target at the predetermined terminal time T. The second term
reflacts the desirability of having the parachute point upwind at the terminal
time in order to reduce the net horizontal velocity and thus the impact at touch-
down. The last term reflects the cost of control effort in terms of the 'average
pover' spent over the interval t sts x.

A time-varying transformation of the origin could be made according to
yp+ (T-thw t eteT (6)

Then minimizing ||p(T)|| is equivalent to minimizing ||y(T)||. Moreover, the

independent variable t could be transformed via

= (7

y y
.. N .Y
¥ ° aZ"'r-t"OT » % F a(—")'r-to » X3 T (8)

The system equations after transformation become

ot
n

1 cos 83

) sin Xy 0Ogt¢l (9)

He e
1] n

3 (T-to)u s u
with initial conditions
1
xl(O) = ;ﬁ:é? fpl(to) + (T-to)w1]

o
x2(0) = m [P2(t°) + (T-to)w2]

x3(0) = w(to)




Here '+' denotes differentiation with respect to normalized time <, The per-

formarce index in terms of these new variables can be rewritten as

P3) = x2(1) + x2(1) + Q.[x.(1)-8-272 + 0. [~ 32(1)d (10)
u) = x1 x2 Q1 x3 -f-% 02 . u (t)de
| Q --7;—33-;
1 az('r-to)2 2" a'(T-to)

In vector form we have

%x = A(x) + By (11)
-~ N 1 -
P(u) = f [A°(x) + Bo(u,t))dt (12)
o
where . .
cos X3 0
- A(x) = |sin Xa » B= |0
¢ 0 1l

L2 2 2
A%(x) = xl(l) + x2(1) + Qlfxa(l)-e-w]
BO(,t) = 0,(¢) .
B. Existence of Optimal Control
According to an existence theorem by Lee and Markus [3], we can show the

existence of an optimal control to our problenm.

Theorem 2.1: Consider the following process in R":
k = A(x,t) + B(x,t)u 0stsT
A performance index
T
P(u) = [ [A°(x,t) + BO(u,t)ldt
o

is to be minimized.

Assume:

(i) A, B, A°, B°, g%a gg-are continuous for all x ¢ Rn, ue Rm, teR




(11) A°(x,t) 3 0 ¥(x,t) ¢ R**!

(111) B°(u,t) 3 m|u|P fur some constant m > 0, p > 1
(iv) For each fixed t, B°(u,t) is convex in u
(v) |x(t)] ¢ B(Iull). where B(+) is a monotonic increasing function.
(l-ll expresses L,-orm).
Let the set of admissible controls be Lp[O,T] suck that the response x(t)
initiating at x, yields a finite P(u). Then there exists an optimal control u*
which minimizes P(u).
Proof Refer to [3].
In view of eqs. (11) and (12), conditions (i) thru (iv) are evidently
satisfied. Let
[x(t)] = % Ixi(t)l 0Ogtsgl (13)
Since i
xl(t) = xl(o) + I: cos[xs(s)]ds
it follows from the triangle inequality that
t
le(t)l £ le(o)l + Io Icos[xs(s)llds £ le(o)l + 1.

Similarly,

|x2(t)| 3 |x2(o)| +1
and

1
'*3(t)| £ |x3(o)| + Io |u(s)lds = |83(0)| + Iu(t)l1 .

Substituting these inequalities into eq. (13),
3
Ix(t)] £2+ ] x,(0) + lue)]; = sClue)])) .
l r

Obviously, B(+) is monotonically increasing in its argument; thus, condition (v)
is also fulfilled. By Theorem 2.1 there exists an optimal control

uk ¢ L2[o,1] which minimizes the performance index 5(6).

o hadaasd aea e o er
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C. Necessary Conditions for Terminal Constraint Problem

A more appealing prob.lem is to incorporate the terminal constraints into

the original optimization problem, i.e., to consider the following modified

performance irdex:

P(Y) = x§<1) + x§<1) + Ql[xa(l)-e-wJ2 + b (1) + byxy(l)

1l
+ b3[x3(1)‘9"] +Q, Io GQ(S)ds (14)

bi's are appropriate Lagrange multipliers.
In this constrained optimization formulation, we require that the paracﬁute
be driven to the target and directed opposite to the wind at touchdown, while the

average energy spent is minimized. Recall the integral form of ‘he system

equations
t
xl(t) = xl(o) + I cos[xa(s)]ds
: 0stgl (15)
xz(t) = xz(o) + Io sin[xa(s)]ds

By the Schwartz inequalitv,

t t
le(t) - xl(o)l2 s‘{I Icos[xa(s)llds}2 £ J cosz[xa(s)]ds
o o

t
!xz(t) - x2(o)|2 3 Io sinz[xa(s)]ds .
This implies
|%,(1) - %, (0)|% + [x,(1) - x,(0)|% € 1.

Hence, if a control exists which drives X, and x, to the origin at the terminal

time, it is necessary that
le(o)|2 + Ix.‘,(o)l2 £1

In other words, the initial conditions of X, and X, must lie within the unit

circle on the horizontal normalized plane.

9




One other observation is that If we negate the trejectory of Xq by
applying a negative control and a negative initial conditien on X,, the system
equations become

t
(1) = xy(e) + f [-6(s)ds

o]

t

-x2(t) = -x2(o) + I Qin[-xs(s)]ds

o

"I(t) = xl(o) + [: cos[-xs(s)]ds
Due to the symmetric property of the cosine function, we corclude that it Is
sufficient to consider the upper half unit circle as the weiking zone of our
problem. This is shown in Fig., 2. The negation of an oy.. :al control ut for a
set of initial conditioans (xl(o). x2(o), x3( 0)) would be an optimal control for

the set of initial conditions (xl(o). -x2( ), -xs(o)).

III. COMPUTER SIMULATION

The purpose of this simulation work is to study the practicality of comput-
ing an optimal control on-line with the DDP algorithm. Given a uniform wind with
iknown magnitude and direction, a constant descent rate, initial altitude and
direction of the parachute velocity vector relative to air, selacted points in
the upper wmit circle are chosen with various launchins =sngie w(o) to initiate a
search for the optimal control as a function of time. Since the initial guess
of the nominal control and multipliers plays a crucial role in the convergerce,
in order to make a proper correction of an initial guess promptly after the first
one fails, the entire simulations have been executed under a t:i.me-sharing svstem

CP/CMS of IBM/360.

10
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A. Simlation Procedure

In accordance with the DDP algorithm described in the Appendix, an outline

of the simulation procedure is as follows:

1. Guess a nominal control u(t), 0 € t £ 1, and integrate the system equations to
obtain x(t). Store u(t), x(t). GCuess a set of nominal multipliers b, and
compute the corresponding nominal cost V(xo,s,o).

2, Compute boundary conditions for "a", Vx, and vxx’ then integrate &, Qx, Vxx |

backwards from t = 1 to t = 0, while minimizing H(i,u,vx,t). Compute 8,

and store the minimizing control u*(t), B., and alx,b,t).

1°
3. Compare |a(x°,5,0)| with a specified small quantity n . If lal < ny» the
predicted change in the performance index is small; (u,x) thus is considered
as the optimal solution of a constraint-free problem. Otherwise, go to 4.
In addition, if ||w(x(1),1)]| < n,, vhere n, is a specified allowable
terninal error, then (u,x,b) is considered as the optimal solution of the
termina) constraint problem. Stop.

4, Apply the modified control u = u* + Bl(x-i) fromt =0tot=1, If the

reduction in cost, V-V, is large enough compared with the predicted change in
cost; e.g., %é%-> ¢ (= 0.5), c is an empirical factor, then let (u,x) be the
new nominal solution and go to 2., Otherwise, 'step-size adjustment' technique

is required. (Jacobson and Mayne [2])

1l
5. Modify the multipliers by &b so that F + (5 + éb)'y + I Lds attains a minimum
o

corresponding to ¢

0. Then compute bouncary conditions for vb, be’ vbb'
Integrate w)b, v b° w}bb backward from t = 1 to t = 0. Compute B,, and store it.
6. To compute éb, notice that for the optimal solution
Vp(x ,b*,0) = ' (x*(1),1) =G  where b* =b + b .
Expand V, to first order ahout b and assume Vbb(xo,ﬁ,o) is nonsingular;

we have

11
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éb = -v;}l)(xo,s,o)vl;(xo,s,o)

7. Apply the new control u = u* + Blcx + 8,8b to the system. Store u and x,

then check whether &b is acceptable or not according to
() e, - [Jex1),1]] > 0

G(x ,b*,O) - v(x ,S,O)
(11) v, > —2 2 >

——— > Y,
V(Xo,b*,O) - v(xogbgo)

where v is the new nominal cost, Y, and v, are suitably chosen (e.z.,

0 <« Y, < 1, Yy > 1), If satisfied, (u,x) is a new improved nominal solution
with cost G. Return to 2. If not, go to 8.

8. Choose (db)ne' z %-Gb and go to 7. If no correction has been attained after

several reductions of &b, then (ii) of 7 is released. The only demand on

b is to reduce ||v]].

B, Simulation Resuits

In Section II.B we have shown that it is sufficient to consider the upper

half unit circle as a working zone. Twelve rays of angles 0°, 14°, 30°, u5°,

68.2°, 90°, 105°, 120°, 135°, 150°, 165° and 180° partition the upper-half umit

circle into eleven sectors. Five points are chosen along each ray as initial

launching points. Thay are located at 0.1, 0.35, 0.6, 0.8 and 0.95 of the unit

radius and expressed as A, B, C, D, E, respectively. It is assumed that the

complete feasible region is so smooth that the distribution pattern over these

sixty points is enough to represent the upper half wmit circle. Table 1 lists

the coordinates of these points.

Without loss of generality, an easterly wind (along the negative xl-axis)

is considered of magnitude 20 ft/sec. The magnitude of the parachute velocity

relative to air is 30 ft/sec. An error criterion of 0,015 is considered in the

12
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iterative process, which allows maximum deviation from the target at touchdown of
no more than 45 ft. and deviation from the up-wind direction of no more than R.5°.
Weighting factors Q1 and 02 are 1.0 and 0.1, respectively. The gliding time is
100 sec.; however, only normalized time appears in the simulation process. The
unit time interval is once divided into 100 subintervals when an integration
routine is applied, although the DDP algorithr is originally devised to equip the
integration routine with 500 subintervals. By taking this subdivision it is found
that only one-fourth of computer storage (128K bytes) and one-third of cost are
required in addition to a loss of accuracy within an order of 1% compared to that
of '500' subdivision.

Based on the information available before the search, different initial
guesses of nominal control and multipliers are used. Among these, constant
control with null multipliers as well as piecewise constant control with null
multipiiers are interchangeably chosen for every initial setting of launching
angle. The value of the contrcl is determined such that the launching angle is
driven opposite to the wind at the terminal time by this control. In additien,
for each fixed radial point consecutive changes of launching angle are made to
form a complete data set. At each step change of these angles, a previous
successful optimal control and multipliers are considered as current initial
guesses of the nominal control and multipliers. In most instances, as one would
expect, the latter combination achieves much better convergence than the former
two.

It is observed that as far as the convergence is concerned, there is a
atrong dependence on the way launching angle is measured. More specifically, if
we define a counterclockwise measurement to be positive, then a convergent solu-
tion is achieved more frequently for a negative launching angle than for its
positive counterpart (i.e., w, + 2v). This can be seen from the fact that the

velocity angle is directly effected by control and the wind is pointed along the

13
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negative xl-axia which requires the terminal velocity angle to be zero. A nega-
tive measure of launching angle directs the trajectory to make a counterclockwise
turn towards the wind at the terminal time. For instance, consider a test

point A in the first quadrant with a launching angle -v or its counterpart =.

We can plot a tentative ocptimal trajectory initiated by - as the dotted line, the
trajectory initiated by v s the circled line shown in Fig. 3. It {s clear from
this figure that the dotted trajectory is much more feasible than the circled one.
In this case 2 negative launching arngle with a positive control which gives a
counterclockwise turn towards the wind has a better potential to reach the

origin than a trajectory initiated by a positive launching angle. Similar situa-
tions are f{llustrated at test points B and C. This geometrical consideration
determines an initial guess of the nominal control which usually results in a
convergent solution.

Representative optimal controls and corresponding trajectories in the
normalized plane are shown in Fig. 4 thru Fig. 8. Since an easterly wind is con-
sidered, the velocity angle is driven to zero at the terminal time. This is
easily seen from these figures by noting that the slope of X;~%, trajectory de-
notes the tangent of the velocity angle. For those points outside 80% of the unit
circle, the optimal control renders most of its effort (in terms of magnitude)
to bend the trajectory at the beginning towards a natural glide ({.e., with null
control) and to the opposite direction of wind at the end of flight. If a bank
angle restriction were imposed in a practical case, which meana the control is
constrained to a certain bounded value, then a prolongzed gliding period, which in
tum requires a higher launching altitude, has to be used i{n place of the 100 sec.
considered here to scale the magnitude of this control, see eq. (9).

It is also interesting to notice that for some >f these test points, the
magnitude of launching angle is even raised beyond 3uu® in order to achieve a

convergent solution. This trend becomes more apparent as the test points move

1y




aiohg a radial direction towards the origin. Meanwhile, the optimal control pattern
appears to exhibit low frequency sinusoidal characteristics. In other words, the
control effort is smoothed throughout the whole time interval riather than sharply
enforced at the begimming and end of flight. The reason is that the closer the
test point to the origin, the more effort should be spent to counterbalance the
trade-off between ;the fixed gliding time and distance from the origin. Thus the
optimal trajectory has a somersault turning effect; i.e., for those circumstances
where the excess flight tiwme is large the parachute meanders around the target.

In the simulation process, it is felt that a good choice of Lagrange
multipliers in addition to the nominal control usually mskes a distinet difference
to the final convergence. The self-adjustment routines provided by the DDP
algorithm in computing the improved variation of multipliers and control are
based on a second order Taylor expansion about the optimal solutions. The optimal
miltipliers corresponding to the optimal solutions depicted in Fig. 4 thrmu
Fig. 8 are given in Table 2. From this, one can sketch how sensitive these
multipliers a2re to the initial condition changes.

The entire simulation work is summarized in Fig. 9. Completely and
partially feasible regions are specified individually as the pear shape shaded
area and funnel shape spots outside this area. This map provides a conve  .ent
reference for the pilot to drop the parachute while flying into the completely
feasible region under uniform wind conditien. All feasible ranges of launching
angle are tabulated in Table 3. The bank angles corresponding to the magnitudes
of the normalized controls are shown in Fig. 10 for various (T-t,) values. A
comparison with the optimal control values in Figs. 4-8 indicates that bank
angles exceeding 30° would only be required when the time to go is relatively
short -- on the order of 20 or 30 seconds.

An average cost of $2.50 corresponding to a CPU time of 20 sec. is needed

to compute a typical solution.

15
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Iv, CONCLUSION AND REMARKS

The optimal control problem for a gliding parachute system is formulated
in two ways. One is to minimize the performance index without terminal constraints,
and the other is with the constraint. We have shown the existence of an optimal
control for the former probiem. Nevertheless, we van cnly provide some convergent
results in the latter case. Two reasons may explain this. First, the controlla-
bility question of a nonlineur system of the type considered here is not answered
yet; that is, the existence of such a control that drives the given system to
the origin at & prespecified time is beyond our knowledge. Second, an inherent
deficiency in the DDP successive approximation scheme arices when singular matrix
inversions are encountered.

A completely feasible region in the upper half unit circle is computed and
specified. In th’'s region, a convergent solution is achieved for any given condi-
tion. In the rust of the upper unit circle, for different initial coordinates
(xl,x2), feasible ranges of launching angle from which convergent solutions are
obtained have also been specified.

It is observed that the optimal control function, as well as the feasible
range of launching angle, varies considerably along both the radial and cireular
direction. The initial guess of nominal control and multipliers thus {"ays an
important role in obtaining convergence. In most cases, a geometrical considera-
tion i helpful to determine such an initial guess.

From a practical viewpoint, further investigation is needed to determine
either a more efficient algorithm for computing optimal controls or an acceptatle

suboptimal control law which can be implemented on-line.

16
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APPENDIX
! Derivaticn of a DDP algorithm

A second order differential dynamic programming (DDP) algorithm is applied

| to compute the optimal control for selected initial conditions in the upper half

unit circle. Here is a brief review of the derivation of tris algorithm,

(Martensson [4])

Given a dynamic system

x = f(x, u, t) x(0) = S (16)
and the performance index

o A

T
k. min  J(u) = min {F[x(T),T] + f L(x,u,t)dt} (17)
! u(t) u(t) o

: 0<t<T 0<teT

1 Subject to the constraint equation

wlx(T),T1 = 0, (18)

One way to manage the terminal constraints is to incorporate ¥ into the per-
formance index by means of Lagrange multipliers (Bryson and llo [1]). From now on,

( we will consider e modified performance index

- T A
J(u) = F[x(T),T] + j Lix,u,t)dt + b [x(T),T]
(o]

() means taking the transpose of a vector or matrix.)

3 Define

. T
V(x,b,t) = min {F +b y+ f Lds}
u(s) t
t<s<T

18
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Assuming that V(x,b,t) exists and is twice continuously differentiable with

respect to x and t for all te[0,T], then V satisfies the Hamilton-Jacobi-

Bellman equation

v _ .
-3 mtn {L + Vx f}

- - %
Suppose u, X, b is a nominal solution neighboring to the optimal solution u (

- 't - % -
= u(t) + Su(t), x’(t) = x(t) + 8x(t), b =b + &b then equation (21) becomes

) %¥ bt = ?in {L(x + 8x,u + 8u, t) + V (x + 8x, 5+ 6b, t) £(x + &x, U
u

(21)

t)

+ 8u, t)

(22)

"
Now assume V(x", b, t; is sufficiently smooth to be expanded in a second order

] ]
Taylor expansion. Then we can approximate V(x , b , t) with

1
2

13 e 1
Vix , b, t)=V+ Vx6x + Vb6b + <8x, be6b> + = <6x, Vxx6x> + §-<6b, V.. éh>

bb

] % = -
Vx(x s b, t) = Vx + 8x Vex * éb be

all quastities are evaluated at x, b, t unless otherwise specified. Let a(x,

(23)

b, t)

be the difference between optimal cost at x, b, t and predicted optimal cost at

this point, i.e.

a(x, b, t) = V(x, b, t) - V(x, b, t)

Substituting Eq. (22)-(24) into eq. (22),
v av oV v v,
v X b xb . 1 XX 1 bb
S AR, 1 L ] £ e =) S5
{at + T §x ¢+ T §b + <8x, 3t 0>+ 3 <§x, 3t §x> + 5 <éb, 3t 6b>}
=rg‘iln {L+<Vx+6xvxx+6bvxb,f(§+6x,ﬁ+6u,t)>}

19
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(25)




"

% b
Because V(x , b , t) is approximated by a second order expansion, the following

relations between total and partial derivatives hold:

a o _ 3 s - -
I (V+a)s= Sz(v + a)+ Vx f(x, u, t)

B 3l .
-at-:-v'x=a—t—-+f(x, u, t) Vxx
g_.v :E_v.’.‘i
dt xx it (26)
av
d b s- - .
ahTw P u O,
a, . My
dt 'bb T a3t
2_ v . deb
dt xb at

All V and its partial derivatives are evaluated at x, b, t. Eq. (25) and (26)
are fundamental equations in this DDP algorithm. From these equations we can
identify all those partial derivatives of V(x, b, t) in terms of the Hamiltonian,
which we'll introduce next, and its partial derivatives with respect to u and x.
These values can he computed simultaneously when we integrate Eq. (26) to find
V(x, b, t) and its partial derivatives with respect to x and b.

Finally, compute V(x*, b*, t) according to Eq. (23). During this process,
éu the optimal variation which should be added to the minimizing control u

(which minimizes Hamiltonian) is alsc computed in terms of &x and éb.

Define the Hamiltonian to be
H(x, u, Voo t) = L{x, u, t) + Vy f(x, u, t) (27)

By this definition, if we let &x and 8b be zero in ihe right hand side of Eq. (25),

we have in terms of H

20




b

min {H(x, u + Su, Vs t)} (28)
Su

*
First we can determine the optimal variation Su that minimizes the bracket
- - -~ - #*
in (28), and let the minimum be H(x, u, Vx, t) where u = u + Su . The
necessary conditions for this are
H(;‘iaiv ’t)=0
4 X (29)

and

Huu(x, ;, Vx, t) >0 (positive definite)

This u would be the optimal solution if the corresponding trajectory and

multipliers were x and b respectively. However, this is not the case in general.
Therefore, certain correctiorson u must be made to take into account the
difference between (x, b) and the optimal one. Let these differences be éx

and 8b respectively. Reconsider the minimization of Hamiltonian as

?in {H(x + §x, u + 6u, V. (x + 6x, b+ &b, t), t)} (30)
u

Again, necessary conditions for a minimum would be

Hu(i + 6x, u + 6u, V. (x + 6x, b+ 6b, t), t) =0
_ . _ _ (31)
Huu(x + 8%, u + 6u, Ve (x + 6x, b + 6b, t}, t)> 0
In order to determine Su in terms of 6x and 8b, we expand Eq. (31) to first

order about i, ﬁ, 5, t. Then

»

H +H Su+H b8x+f (V. 6x+V
uu JX u XX

a éb) = 0

xb

From Eq. (29) Hu = 0, hence

Huu6u+(Hux+quxx) 6x+quxb b =0

21
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Assume Huu(i, u, V.» t) is nonsingular, then

§u = 31 x + 8 &b (32)

(11}
[ ]
—
—

where Bl

(33)

Insert du into Eq. (30) and expand it to second order about x, u, b, t; using

the fact Hu(i, u, Vs t) = 0, we obtain
H + (Hx + f vxx) dx + f be §b + <6x,{(Hux + fuvxx) 32 + Bl HuuBQ
- l rd rd
+ (fx + fuel) vxb} 6b> + <éb, {5- By H Byt Vy f 32} Sb>
+ <6x {E-H + V. £ + 1 8‘ H B, + B‘ (H +¢f ‘V )} 6x> (34)
> T2 Txx XXx 21 uul 1l " ux u XX

vhere all quantities are evaluated at &%, u, B, t.

The series expansion (34) is now ready for identification with the left hand
side of Eq. (25). We can identify those partial derivatives by equating the
coefficients of power terus in 6x and éb. Finally, after combining with Eq. (26)
we obtain a set of ordinary differential equations from which V, Vx, Vv

b’ vxb’
Vex® Vpp are integrated; 1,e.,
da - =
T H - H(x, u, Vx t)

-5 S H [f - f(x, u, t)] Vox

dVb

el [f - £(x, u, t)]‘ Vb

22




E oy ik Heomasinity
1y

dv
m _ -
T [fx J fusll vxb
- EZEE = - g‘ H g
dt 2 'uu "2
dvxx . - - - »
T SHe t £ W Vex Ex * By Hou B) ¢ B) (Hux b Vxx)

t(H_+f v ) g

ux u XX 1

with boundary conditions
a(x(7), 5, T) =0

vx(i(T), b, 7) = Fx(i(T), T) + 5 Ve (x(T), T)

V(X(T), B, T) = 4 (R(T), T)

vxb(i(T), b, T) w; (x(T), T)
vbb(i(T), by,T =0

vxx(i(T), b, T) = rxx(i(T), T) +b wxx(i(T), T)

All terms on the right hand side of Eq. (35) are evaluated at X, u, b, t

unless other wise specified.

(35)

(36)
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FIG.| PARACHUTE DYNAMICS IN HORIZONTAL PLANE.
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FIG.2 UPPER HALF UNIT CIRCLE.
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FIG. 4(a) OPTIMAL CONTROLS vS. NORMALIZED
TIME,

X2
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FIG. 4(b) OPTIMAL TRAJECTORIES IN
NORMALIZED COORDINATES.
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FIG. 5(a) OPTIMAL CONTROLS vs. NORMALIZED
TIME.
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FiG. 5(b) OPTIMAL TRAJECTORIES IN NORMALIZED
COORDINATES.
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1 FIG. 6(a) OPTIMAL CONTROLS vs. NORMALIZED
| TIME.
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FIG.6(b) OPTIMAL TRAJECTORIES IN
NORMALIZED COORDINATES.
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FIG. 7(b) OPT!MAL TRAJECTORIES IN
NORMALIZED COORDINATES.
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FIG. 8(b) OPTIMAL TRAJECTORIES IN
NORMALIZED COORDINATES.
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